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ABSTRACT

Reversible protein phosphorylation provides a
major regulatory mechanism in eukaryotic cells.
Due to the high variability of amino acid residues
¯anking a relatively limited number of experimen-
tally identi®ed phosphorylation sites, reliable pre-
diction of such sites still remains an important
issue. Here we report the development of a new
web-based tool for the prediction of protein phos-
phorylation sites, DISPHOS (DISorder-enhanced
PHOSphorylation predictor, http://www.ist.temple.
edu/DISPHOS). We observed that amino acid com-
positions, sequence complexity, hydrophobicity,
charge and other sequence attributes of regions
adjacent to phosphorylation sites are very similar to
those of intrinsically disordered protein regions.
Thus, DISPHOS uses position-speci®c amino acid
frequencies and disorder information to improve the
discrimination between phosphorylation and non-
phosphorylation sites. Based on the estimates of
phosphorylation rates in various protein categories,
the outputs of DISPHOS are adjusted in order to
reduce the total number of misclassi®ed residues.
When tested on an equal number of phosphorylated
and non-phosphorylated residues, the accuracy of
DISPHOS reaches 76% for serine, 81% for threonine
and 83% for tyrosine. The signi®cant enrichment in
disorder-promoting residues surrounding phos-
phorylation sites together with the results obtained
by applying DISPHOS to various protein functional
classes and proteomes, provide strong support for
the hypothesis that protein phosphorylation pre-
dominantly occurs within intrinsically disordered
protein regions.

INTRODUCTION

Intrinsically unstructured proteins are frequently involved in
key biological processes such as cell cycle control, transcrip-
tional and translational regulation, membrane fusion and
transport, and signal transduction (1,2). A high percentage of
cell-signaling and cancer-associated proteins are predicted to
have long disordered regions, suggesting the general import-
ance of intrinsic disorder for signaling and regulation (3). An
investigation of the functions performed by intrinsically
disordered regions reveals that they are often involved in
molecular recognition and protein modi®cations including
phosphorylation (4).

Protein phosphorylation represents an important regulatory
mechanism in eukaryotic cells. At least one-third of all
eukaryotic proteins are estimated to undergo reversible
phosphorylation (5). Phosphorylation modulates the activity
of numerous proteins involved in signal transduction, and
regulates the binding af®nity of transcription factors to their
coactivators and DNA thereby altering gene expression,
cell growth and differentiation (6). Phosphorylation sites
frequently cluster within functionally important protein
domains, i.e. the majority of phosphorylation sites of Mdm2
are located in its p53- and p14-ARF-binding regions (7), and
the phosphorylation of PEST motifs in¯uences ubiquitin-
mediated protein degradation (8).

The phosphorylation sites in proteins were found within
intrinsically disordered regions in some cases, and within
regions of well ordered structure in other instances. With
regard to the structural consequences of phosphorylation, both
disorder to order and order to disorder transitions have been
observed to follow the phosphorylation event (9).
Conformational changes upon phosphorylation often affect
protein function. For example, serine phosphorylation of the
peptide corresponding to the calmodulin binding domain of
human protein p4.1 in¯uences the ability of the peptide to
adopt an alpha-helical conformation and thereby impairs
the calmodulin-peptide interaction (10). Another example is
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the v-cyclin-CDK6-mediated phosphorylation of two serines
in the unstructured loop of Bcl-2, which abolishes its anti-
apoptotic potential (11).

Experimental dif®culties in the large-scale identi®cation of
protein phosphorylation sites stimulated the development of
computational approaches to predict these sites from protein
sequence. Two major bioinformatics tools currently available
for proteome-wide identi®cation of phosphorylation sites are a
neural-network based predictor NetPhos (12) and a motif-
based service Scansite (13,14). Both NetPhos and Scansite are
available via the Internet. However, due to the high degree of
variability in consensus patterns around phosphorylation sites
caused by the diversity and the large number of kinases (15),
and the still relatively small number of non-redundant,
experimentally veri®ed sites, high-accuracy prediction of
phosphorylation sites remains an open research area.

To gain further insight regarding the role of disorder in the
phosphorylation process, we investigated more than 1500
experimentally determined phosphorylation sites in eukaryo-
tic proteins and compared them with ordered and disordered
protein regions. The similarity in sequence complexity, amino
acid composition, ¯exibility parameters, and other properties
between phosphorylation sites and disordered protein regions
suggests that intrinsic disorder in and around the potential
phosphorylation target site is an essential common feature for
eukaryotic serine, threonine and tyrosine phosphorylation
sites. Based on this observation and state-of-the-art
machine learning principles, we constructed a new predictor
of phosphorylation sites, DISPHOS (DISorder-enhanced
PHOSphorylation predictor) that has an improved accuracy
in comparison to the widely used NetPhos and Scansite.
Explicit use of disorder prediction, expansion of the training
data set, model choice, feature selection/extraction and
training and testing processes all contributed to an improve-
ment in phosphorylation site prediction accuracy, which
reached values of 76.0 6 0.3, 81.3 6 0.3 and 83.3 6 0.3%
for serine (S), threonine (T) and tyrosine (Y), respectively.
Furthermore, estimates of fractions of phosphorylated residues
(class priors) in various kingdoms, proteomes and protein
functional categories were used to adjust the outputs of the
predictor and minimize the number of misclassi®ed residues in
proteins from these groups.

MATERIALS AND METHODS

Data sets

We created databases of positive (P) and negative (NP) sites
by extracting 25-residue long sequences centered at S, T and Y
sites from the eukaryotic proteins in SWISS-PROT using
`Eukaryota' in the organism ®eld. To construct the positive
data sets (PS, PT and PY), only the residues annotated as
`phosphorylation' in the `MOD_RES' ®eld were selected, and
the sites annotated as `potential', `probable' and `by similar-
ity' were omitted. The control data sets of non-phosphorylated
sites (NS, NT and NY) were extracted from the same proteins
and represented all S, T and Y residues that did not have the
`phosphorylation' or `phosphorylation' combined with `poten-
tial', `probable' or `by similarity' annotation.

We then combined the SWISS-PROT sites with the
PhosphoBase sites and removed all P- and NP-sites that had

more than 30% sequence identity (excluding the middle
residue) inside the combined data sets. This relatively
conservative threshold used for such short fragments (16)
was selected in part to prevent situations where non-redundant
fragments are associated with considerably different numbers
of homologs at >30% sequence identity. Additionally, a data
set biased towards some non-redundant fragments would not
only in¯uence generalization of the predictor, but also produce
inaccurate estimates of the predictor's performance on non-
redundant data. Thus, in effect, only seven residues out of 24
were allowed to match in the pairwise alignments in which no
gaps were allowed.

The negative data set may contain numerous un-annotated
positive sites, which inevitably contribute to noise in the data
set. Furthermore, due to the presence of homologous proteins
and as a consequence of combining two databases, the same
site may be annotated as phosphorylated in one protein, but
not in its close homolog or duplicate. Such disagreement in
annotations may be a result of different experiments involving
different kinases. Thus, the same site would be included in
both positive and negative data sets. To address this problem,
all NP-sites with >30% identity with any of the P-sites were
discarded.

Even after the elimination of sequence redundancy, the
combined data set may still be biased with respect to the
kinases involved in phosphorylation of the remaining P-sites.
To investigate this issue further, we extracted detailed
annotations (including kinase names) for all phosphorylation
sites from our positive data sets. This allowed us to calculate
that at least one phosphorylation site for over 60 different
kinases is included in our positive data sets even after
redundancy elimination, and that on average ~40% of the
P-sites are phosphorylated by the unknown/unannotated
kinases. Moreover, none of the well studied kinases is
associated with >10% of the P-sites in our positive data sets.
Thus, we consider our data sets to be reasonably diverse and
not severely biased both in terms of sequence redundancy and
kinase representation.

Other data sets used in this study were: (i) all disorderÐ
disordered regions characterized by X-ray diffraction
(extracted from PDB-Select-25), NMR and CD (extracted
from the literature); (ii) Globular-3DÐthe ordered protein
regions extracted from Protein Data Bank (PDB): ®brous
sequences such as coiled coils, collagen and silk ®broins were
removed from this data set (17); (iii) PDB orderÐordered
protein regions from PDB-Select-25, a non redundant set of
PDB structures; (iv) 12 protein functional categories, con-
structed as previously described (3); (v) viral, bacterial,
archaeal and eukaryotic proteins were extracted from SWISS-
PROT using the keyword search in the organism ®eld; (vi) the
seven eukaryotic proteomes were downloaded from NCBI
(ftp://ftp.ncbi.nlm.nih.gov/genomes/).

Feature construction and selection/extraction

The input to a predictor of phosphorylation sites is a 25 residue
long sequence with S, T or Y in the center. The position-
speci®c features were constructed using the standard ortho-
gonal (binary) representation (18). Brie¯y, for each position of
the input sequence we constructed a 20-dimensional vector of
0s with a 1 only for the residue observed at this position. Since
the central residue is always S, T or Y, this site was not
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included, resulting in 24 (positions) 3 20 (amino acid
residues) = 480 binary features. Predictions for residues near
N- or C-termini were made using half of the features.

Another 20 features represented the relative amino acid
frequencies over the window of 25, and the outputs from ®ve
predictors of disorder [VLXT (17), VL2 and VLC, VLV, VLS
(19)] were also employed as features to construct the
phosphorylation predictor. Three more features used the
information from the three secondary structure predictors:
PHD (20), SSPAL (21) and NNSSP (22). The predictions of
helix, sheet and loop for PHD, and helix and sheet for both
SSPAL and NNSSP, totaling seven features, were utilized.
Seven additional features were added: sequence complexity
(23), net charge (K + R ± D ± E) (24), aromatic content (W + F
+ Y), hydrophobic moment (25), hydrophobicity (26), ¯exi-
bility scale (27), and Janin's scale for surface exposed and
buried residues (28).

In total, we collected a set of 519 features (480 binary and
39 real-valued). A binary target variable (1 for P-site, 0 for
NP-site) was then added to each example. Consequently, two
matrices were constructed for each residue (S, T and Y):
matrix P for positive sites and matrix N for the negative
control set.

The small number of positive examples, high dimension-
ality, correlation among features, and the sparse nature of each
sample required dimensionality reduction. We applied the
Fisher's permutation test (29) to the set of 480 binary features
and selected only those that had signi®cant or near-signi®cant
differences in position-speci®c amino acid compositions
between P- and NP-sites (P < 0.1). Since the sample remained
sparse and still contained correlated features, we then
performed PCA (30) and utilized a smaller ®xed number of
principal components in predictor construction. The forward-
selection algorithm (31) was used to select the best of the
remaining 39 non-binary features.

Predictor training and testing

We combined each set of positive examples PS, PT and PY

with their corresponding sets of negative examples NS, NT and
NY to construct linear predictors based on logistic regression,
a maximum-likelihood technique suited for classi®cation
problems. Linear predictors were used due to the small
sample sizes, especially in the cases of threonine and tyrosine
sites, and possibility of noise.

The training algorithm used to construct DISPHOS is as
follows. Ten percent of both positive and negative sets were
selected at random to form a test set. The remaining 90% of
the positive examples and a random selection of the same size
from the remaining 90% of negative examples were included
in a balanced training set, and a predictor was trained. The
training was repeated for I = 30 random selections of negative
examples, and the prediction on the test set was made by
averaging raw outputs from all I models. To avoid the
dependence of prediction results on the choice of the test set,
the whole procedure was repeated until the con®dence
intervals of the performance measures dropped below a
pre-speci®ed threshold.

Performance evaluation

To evaluate the performance of the predictors, we measured
sensitivity and speci®city for a given set of parameters used

for dimensionality reduction and model construction. This
approach is commonly used in cases of imbalanced class sizes.
Sensitivity (sn) is de®ned as the percentage of positive
examples, i.e. phosphorylation sites, correctly predicted, while
speci®city (sp) is the percentage of negative examples
correctly predicted (32). Assuming that the class sizes are
equal, the accuracy of prediction (acc) can be expressed as the
arithmetic mean of sensitivity and speci®city. This sets the
results of a prediction at random to 50% accuracy. Since all
experiments were repeated n times, together with accuracy, we
also report 95% con®dence intervals calculated as 62s/Ön,
where s is the standard deviation of the estimated parameter
(sn or sp).

Estimation of class distributions in functional protein
categories and genome-wide predictions

Estimates of class distributions in the unlabeled sets of
residues are generally obtained by simply applying predictors
to the unlabeled data. However, it is often the case in
bioinformatics that class distributions in the labeled (or
training) data sets are signi®cantly different from those in
the unlabeled data sets. For example, PDB is biased
towards crystallizable proteins as compared to SWISS-
PROT, and predictors trained on the PDB data may not
achieve accurate estimates on SWISS-PROT. Thus, class
distributions in the unlabeled data cannot be directly calcu-
lated as fractions of residues predicted to belong to each class
(P and NP). In order to estimate probabilities of each class in
various protein groups, we used the approach brie¯y presented
below.

Let us denote the fraction of residues predicted to be
phosphorylated in an unlabeled set by q(1) and fraction of
residues predicted not to be phosphorylated by q(0), where
q(1) = 1 ± q(0). In matrix formulation we can express these
fractions as q = [q(0) q(1)]T. The predicted class distribution q
in an unlabeled data set can be expressed as:

q � P � p 1

where p = [p(0) p(1)]T is the unknown true class distribution in
the unlabeled data set and

P � sp 1ÿ sn

1ÿ sp sn

� �
such that sn and sp represent estimates of correctly predicted
phosphorylation and non-phosphorylation sites, respectively,
and they are both calculated using only labeled residues. From
equation 1, an estimate of the class probabilities in an
unlabeled data set can now be obtained as:

p � Pÿ1 � q

Since, in general, E[P±1] ¹ E[P]±1, Vucetic and Obradovic
proposed a bootstrapping-based algorithm to estimate p (33).
In this approach the predictor is iteratively retrained, and a
new matrix P is calculated based on the newly estimated class
fractions until convergence of p is reached. Here, we provide
the convergence of p by shifting the decision threshold instead
of retraining predictors. In each cycle, p was calculated using
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200 bootstrap replicates of the unlabeled data set, which was
created after all proteins from a group were concatenated into
a single long string.

A major limitation of this approach regarding the accuracy
of estimates occurs in the presence of noise, especially in
relatively extreme cases, that is, when p(1) is low or (rarely)
high. In the case when p(1) » 0, sn approaches 0, sp
approaches 1 and the condition number of P becomes
progressively high (in our examples, over 10 000 for the
serine data set), indicating that the estimation system becomes
increasingly sensitive to very small errors in estimations of sn
and sp (34). We believe that experimentally determined
phosphorylation sites are correctly labeled with high accuracy,
and thus the estimates of sn were considered accurate. In
contrast, the con®dence in negative examples is signi®cantly
lower because of the possibility that certain residues were still
not experimentally con®rmed to be phosphorylated.
Consequently, parameter sp was estimated using the negative
data set and not the data set of true negatives; so it is likely
underestimated proportionally to the noise level.

To obtain a more accurate estimate of sp, we used the
following reasoning. The level of noise in all three data sets
was estimated using Tomek links (35). Tomek links have
effectively been used for noise reduction (36), but they cannot
distinguish between borderline examples (examples near class
boundaries) and true noise. However, in the case when
con®dence in the labels of the positive class is high, the
amount of borderline examples can be detected using the
positive set, and the approximation of noise in the negative
class can be simply obtained as a difference between fractions
of `noisy' examples from both classes (under reasonable
assumptions that the noise is uniform and that the similar
fractions of borderline examples are in each class). Fractions
of noisy examples were found by using balanced data sets with
PCA-reduced dimensionality to 15 (after feature selection).
This procedure was repeated multiple times with different
random selections of negative examples, while all positive
examples were used in each run. The experiments on various
arti®cial data of similar size showed that one-sided noise could
be accurately estimated by Tomek links and K-nearest
neighbors if it is not too high (>30±40%). Once the noise
was estimated, the accuracy on negative data was recalculated
in each iteration of the bootstrap-based procedure.
Speci®cally, the corrected speci®city spnew is calculated
from sp = (1 ± sn)´p(1) + spnew´p(0), and then substituted in
P for the old parameter sp. Parameter p(1) = 1 ± p(0)
represents the estimated noise level in the negative data set.

Adjusting predictor outputs according to estimated class
priors

Predictors trained using a speci®c class distribution are known
not to be optimal when applied to unlabeled data with different
class priors (37). Here, we use estimated class priors given a
group of proteins (speci®c kingdom, organism or functional
category) to adjust the predictor outputs such that the total
number of misclassi®ed residues is minimized. Given the class
distribution of the training set pT = [pT(0) pT(1)]T and the
estimated distribution of class priors for a particular group of
unlabeled residues p, the adjusted a posteriori probabilities of
both classes are calculated as:

y�i� �
p�i�
pT�i� � yT�i�X1

j�0

p�j�
pT�j� � yT�j�

i 2 f0; 1g

where yT(i) is the a posteriori probability outputted by a
predictor trained using class distribution pT, which is in our
case [0.5 0.5]T. The output of DISPHOS is y(1), i.e. the
probability that the residue is phosphorylated.

RESULTS

In order to construct an improved predictor, we created a new
database of P- and NP-sites by extracting annotated and
unannotated S, T and Y sites from SWISS-PROT and
combining them with the sites from PhosphoBase, the
database used to train NetPhos (12). We will use the term
`site' to indicate the phosphorylation site itself and the 24
¯anking residues, 12 residues upstream and 12 residues
downstream from the actual phosphorylation site. Our choice
of the 25 amino acid window was based on experimental data
for kinases that are known to contact 7±12 residues adjacent to
the site of modi®cation (38).

First, we evaluated the accuracy of the NetPhos predictor
using the P- and NP-sites derived from SWISS-PROT,
excluding the ones that had >30% identity with the sites
from PhosphoBase. The prediction accuracy of NetPhos (as
de®ned in Materials and Methods) on this out-of-sample set of
107 serine, 36 threonine and 43 tyrosine positive sites
combined with 500 negative sites for each residue, reached
69.1% for S (sensitivity 81.3 6 3.7%, speci®city 56.8 6
2.2%), 71.9% for T (sensitivity 66.7 6 7.8%, speci®city 77.2
6 1.9%) and 68.9% for Y (sensitivity 69.8 6 7.0%, speci®city
68.0 6 2.1%). Note that the accuracy of NetPhos on
PhosphoBase sites shown in the original paper (12) was
calculated under the assumption of 100% speci®city, which is
clearly not the case.

Next, we estimated the accuracy of Scansite (14). Since the
pro®les for Scansite are not publicly available, we tested its
accuracy using 100 positive and 100 negative examples for
each S, T and Y residue randomly selected from our data sets.
We used medium stringency for the evaluation as a reasonable
balance between the sensitivity and speci®city of Scansite.
The prediction accuracy estimated for Scansite was 64.0% for
S (sensitivity 38.0 6 4.9%, speci®city 90.0 6 3.0%), 66.5%
for T (sensitivity 43.0 6 5.0%, speci®city 90.0 6 3.0%) and
68.5% for Y (sensitivity 49.0 6 5.0%, speci®city 88.0 6
3.2%).

All subsequent experiments were performed on the com-
bined data sets consisting of the sites from both SWISS-PROT
and PhosphoBase (Table 1). A detailed description of the data
set construction is given in Materials and Methods.

Analysis of amino acid properties surrounding
phosphorylation sites

We analyzed the properties of amino acids surrounding each
site and determined which residues were enriched or depleted
at speci®c positions. Figure 1 shows the residues for which the
observed differences in relative frequencies between P- and
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NP-sites are statistically signi®cant (P < 0.05). Statistical
signi®cance was calculated using Fisher's permutation test
(29). For the S, T and Y sites we observed 164, 56 and 84
compositional differences, respectively, between P- and NP-
sites with P-values <0.05. A positive difference signi®es that
the P-sites are enriched in the corresponding residue, while a
negative difference signi®es depletion. Each residue was
assigned a property: surface or buried (28) (Fig. 1A), charged
or neutral (Fig. 1B), hydrophobic or hydrophilic (39) (Fig. 1C),
high or low ¯exibility parameters (HFP and LFP, respectively)
(27) (Fig. 1D). The percentages of residues enriched and
depleted in each category are shown in Table 2.

All three types of phosphorylation sites are clearly enriched
in surface exposed residues and depleted in buried residues
(Fig. 1A and Table 2). Interestingly, the most prevalent
amongst the surface residues surrounding serine are serine,
lysine, arginine and glutamic acid, with glutamic acid found
predominantly downstream from the phosphorylation site. The
enrichment in serine agrees with the results of previous
analysis (12) and con®rms the observation that serines tend to
cluster. Another distinctive characteristic of the serine sites is
the depletion of cysteine, leucine, isoleucine and the aromatic
residues. The decreased frequency of leucine and isoleucine is
also observed around T and Y sites. The abundance of aspartic
and glutamic acids in close proximity to the Y site, and proline
at the positions distant to Y, is a signature of tyrosine
phosphorylation sites.

The analysis of the charged versus neutral residues
surrounding phosphorylation sites suggests that all three
sites are strongly depleted in the neutral residues (Fig. 1B
and Table 2), and S and T are slightly enriched in the charged
ones. Among the residues that are under-represented around S,
T and Y sites, neutral residues constitute 94, 93 and 87%,
respectively (Table 2). Interestingly, the reciprocal distribu-
tion of charged versus neutral amino acids does not hold for Y:
this site is both enriched and depleted in the neutral residues.
The high frequency of uncharged proline around Y sites might
explain this result.

The partition of the residues into hydrophobic and
hydrophilic classes shows that all three sites are depleted in
the hydrophobics (Fig. 1C and Table 2), with S (87%) and T
(75%) being especially enriched in hydrophilics. The under-
representation of hydrophobics is mainly due to the depletion
of leucine, isoleucine and aromatic residues around all three
sites.

We used a ¯exibility scale (27) that is based on B-factor
values to evaluate the distribution of amino acid residues with
HFP and LFP (Fig. 1D and Table 2). Following the de®nition
of Vihinen et al. (27), alanine and threonine were considered
to have HFP if ¯anked by residues with HFP, and they were

considered to have LFP if surrounded by residues with LFP.
The prevalence of HFP residues and the depletion of LFP
residues around all sites are observed; 100, 93 and 84% of
residues enriched around S, T and Y sites, respectively, belong
to the HFP category (Table 2). The prevalence of HFP residues
around potential phosphorylation sites may facilitate access-
ibility of the site to the kinase.

The distribution of the disorder-promoting (R, K, E, P and
S) and order-promoting (C, W, Y, I and V) residues (17)
around phosphorylation sites suggests that all sites have amino
acid distributions characteristic for intrinsically disordered
protein regions. The disorder-promoting amino acids are
signi®cantly enriched, and order-promoting amino acids are
signi®cantly depleted around all P-sites in our data sets. This
observation indicates that the addition of the disorder feature
may be important for phosphorylation site prediction.

In addition to the overall comparisons (Table 2), we
examined amino acids and positions that show the largest
signals (or lowest P-values) in Fisher's permutation test. The
top 10 enrichments and the top 10 depletions of such residues
are shown in Table 3. For serine, the P-values for the six most
enriched and the two most depleted amino acids exhibit the
greatest difference between P- and NP-sites with P < 0.0001,
while for T the P-values for all depleted amino acids show
smaller signi®cant differences with P > 0.001. As for Y, the
®ve most enriched amino acids also show the greatest
differences between P- and NP-sites with P < 0.0001. Thus,
the presence of particular amino acids at certain positions
appears to be more important than the opposite, although the
absence of particular amino acids is still statistically signi®cant
in all cases.

Interestingly, several positions that are distant from the
potential phosphorylation site also have signi®cant differences
between P and NP-sites, for example, position ±11 for S,
position ±12 for T and position +9 for Y (Table 2). This result
suggests that although the recognition patterns for the
currently known kinases usually involve only positions in
close proximity to the potential phosphorylation site (usually
within ±5 to +5), the more distant positions may also be
important. Thus, the kinase recognition patterns may be
extended in the future as new kinases are discovered.

Sequence complexity of P-sites versus disordered protein
regions

One feature that distinguishes disordered protein regions from
ordered is sequence complexity K2 measured by Shannon's
entropy and applied to amino acid sequences by Wootton (23).
We discovered previously that the SWISS-PROT database is
characterized by higher amounts of both low-complexity
segments and predicted disordered regions in comparison to

Table 1. Phosphorylation and non-phosphorylation sites used in the current study

P-sitesa NP-sites
No. of initial sites No. of ®nal sitesb No. of initial sites No. of ®nal sitesb

S 1135 613 29 425 10 798
T 265 140 22 243 9051
Y 301 136 13 035 5103

aCombined sites from SWISS-PROT and PhosphoBase.
bSequences with >30% identity were removed from the initial set.
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PDB (17,40). Here we determined the sequence complexity K2

for the P- and NP-sites, and compared them to the K2 of
ordered and disordered protein regions (Fig. 2). The K2

distribution for the phosphorylation sites is very similar to the

K2 distribution for the disordered segments, whereas the K2 for
the NP-sites is very close to the K2 for ordered globular
segments. Moreover, the differences in cumulative percent-
ages for P- and NP-sites (Fig. 2, inset) show that from 1.4 to 5

Figure 1. The amino acid residues signi®cantly enriched and depleted around phosphorylation sites. Each residue is assigned a property: surface (red) or bur-
ied (black) according to Janin's scale (28) (A), charged (black) or neutral (green) (B), hydrophobic (black) or hydrophilic (blue) according to Eisenberg's
scale (39) (C), high (pink) or low (blue) ¯exibility index according to ¯exibility scale (27) (D). Following the de®nition of Vihinen et al. (27) alanine and
threonine were considered to have high ¯exibility if ¯anked by residues with HFP, and they were considered to have low ¯exibility if surrounded by residues
with LFP.
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times more P-sites have K2 values between 2.9 and 3.8,
indicating the enrichment of P-sites in low complexity
segments. The correlation of low K2 with phosphorylation is
an interesting and important result of this analysis.

Amino acid compositions of P- and NP-sites and
disordered protein regions

Disordered and ordered protein regions differ in amino acid
composition, with W, C, F, I, Y, V, L and N being signi®cantly
depleted and A, R, G, Q, S, P, E and K being signi®cantly
enriched in regions of disorder (17). We compared amino acid
compositions of P- and NP-sites and disordered protein

regions (Fig. 3). The results are presented as the difference
between the composition of each data set and the composition
of ordered globular protein regions: (Cdata set ± CGlobular-3D)/
CGlobular-3D.

Overall, the amino acid compositions of P-sites and
disordered regions are very similar. In particular, they are
both signi®cantly depleted in rigid, buried, neutral amino acids
(W, C, F, I, Y, V and L), and are signi®cantly enriched in
¯exible, surface-exposed serine, proline, glutamic acid and
lysine (Fig. 3). Interestingly, we observed >3-fold enrichment
in serine for phosphorylation sites as compared with both non-
phosphorylation sites and disordered protein regions. The
extreme positive S peak for P-sites yet again suggests the
tendency of serines to cluster and the possibility of sequential
phosphorylation at multiple sites.

Predictor construction and accuracy estimation

We ®rst used only position-speci®c amino acid frequencies
(Materials and Methods) to construct a predictor for each site
and to estimate its accuracy. The purpose of this experiment
was to compare the accuracy achieved by DISPHOS with the
accuracy of NetPhos (12) when the same types of features over
the same window size were used. The major differences
between these two predictors originate from the data set
construction, model choice, feature selection/extraction, and
training and testing processes, as discussed below. We also
used the initial predictor developed on the balanced training
set to iteratively estimate the class priors in various groups of
proteins. These estimates, in turn, enabled us to adjust the
outputs of the initial predictor thus minimizing the total
number of misclassi®ed residues in each protein group.

We expanded the positive and especially negative data sets
(Table 1) by combining phosphorylation sites derived from
two databases, PhosphoBase and SWISS-PROT. Three new
data sets (samples) corresponding to S, T and Y sites,
respectively, were then constructed (Materials and Methods).
After the feature construction process, all data sets were high-
dimensional and sparse (due to data representation), noisy
(due to possible mislabeling of positive and especially
negative sites), and highly imbalanced (with a large number
of negative versus small number of positive sites). The ratios
of positive versus negative sites were 1:18, 1:65 and 1:38 for
S, T and Y, respectively. Additionally, only small sets of
con®rmed positive sites were available for T and Y after
removing similar sequences (Table 1).

Before model training we performed dimensionality reduc-
tion using a feature selection process (Materials and Methods)
and principal component analysis (PCA). Then, following the

Table 2. The percentages of amino acid residues that are signi®cantly (P < 0.05) enriched and depleted around phosphorylation sites

Surface (%) Buried (%) Charged (%) Neutral (%) Hydrophobic (%) Hydrophilic (%) HFPa (%) LFPb (%)

S enriched 95 5 57 43 13 87 100 0
S depleted 25 75 6 94 68 32 11 89
T enriched 79 21 54 46 25 75 93 7
T depleted 29 71 7 93 71 29 25 75
Y enriched 80 20 36 64 53 47 84 16
Y depleted 31 69 13 87 80 20 31 69

aResidues with high ¯exibility parameters by Vihinen et al. (27).
bResidues with low ¯exibility parameters.

Table 3. The top 10 amino acids enriched and depleted around known
phosphorylation sites as determined by Fisher's permutation test (29)

Enriched Depleted
Position Residue P-value Position Residue P-value

Serine sites
±3 R <0.0001 ±11 L <0.0001
±2 R <0.0001 ±5 C <0.0001
+1 P <0.0001 ±3 C 0.0002
+2 E <0.0001 +2 L 0.0002
+3 E <0.0001 +2 N 0.0002
+4 S <0.0001 +3 L 0.0002
±6 K 0.0001 ±6 L 0.0003
±5 R 0.0001 ±3 F 0.0003
±4 S 0.0001 ±2 N 0.0003
+2 S 0.0001 ±4 V 0.0004
Threonine sites
±3 R <0.0001 ±4 L 0.0019
±2 R <0.0001 +7 L 0.0032
+1 P <0.0001 +1 N 0.0063
±12 K 0.0001 ±2 N 0.0064
+12 E 0.0006 +1 F 0.0106
+2 R 0.0007 ±3 L 0.0141
±9 S 0.0015 +4 I 0.0152
+2 D 0.0028 +2 L 0.0162
+6 K 0.0054 +1 A 0.0165
±6 G 0.0060 ±4 A 0.0178
Tyrosine sites
±4 E <0.0001 ±4 L 0.0001
±1 E <0.0001 +2 L 0.0005
+3 M <0.0001 ±4 I 0.0009
+5 P <0.0001 +8 I 0.0009
+9 P <0.0001 +6 F 0.0019
±3 E 0.0001 ±3 L 0.0021
+2 N 0.0001 ±2 L 0.0023
±2 P 0.0003 ±10 N 0.0045
±7 S 0.0004 +11 I 0.0054
±3 N 0.0007 ±10 V 0.0065
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approach of Radivojac et al. (41), we applied a bagging-like
combination of logistic regression models (Fig. 4) to construct
a predictor. Therefore, we carefully approached the problem
of class imbalance that usually requires special treatment since
predictor performance may be highly degraded (42). Neural-
network based predictors did not surpass the accuracy of the
bagged linear models.

When only signi®cant position-speci®c features were used,
the best accuracy for S (74.9 6 0.3%) was achieved using a
dimensionality of 40 and a P-value of 0.1 in the feature
selection process (Table 4). This accuracy exceeded that of
NetPhos on the out-of-sample data set (69.2%) indicating
signi®cantly better performance of DISPHOS when the larger
data set and the re®ned set of position-speci®c features were
used. Similar results were observed for predictors using 30
dimensions and P-values of 0.1 for T and Y: 78.9 6 0.6%
versus 71.9% for T, and 81.3 6 0.5% versus 60.6% for Y.
Without ensembles of classi®ers, i.e. for I = 1, the accuracy
drops by two to three percentage points in each case.

The addition of non-binary features resulted in a further
increase in the accuracy of DISPHOS. Using the forward-
selection algorithm (31), we iteratively added new real-valued
features to the sample until no increase in predictor accuracy
was observed. Four rounds of feature selection were experi-
mentally determined to be suf®cient for each model. In every
round only the feature that increased accuracy the most was
chosen, and only the remaining features were used as
candidates in the next round. The best features with their
accuracies are summarized in Table 4.

As expected, the disorder feature increased the prediction
accuracy for serine and threonine (Table 4). In a few instances,
the relative frequency of an amino acid was also selected as
the best feature (Table 4). Relative frequency features re¯ect
the presence or absence of a particular amino acid anywhere in
the window of 25, and not only at a speci®c position.
Interestingly, none of the non-binary features from Figure 1
were selected as the best for increasing predictor accuracy,
most likely because they were already implicitly included in
the predictor through disorder and position-speci®c features.

We report sensitivity and speci®city of DISPHOS to be in
the range from 76% for serine to 83% for tyrosine. However,
the positive and negative examples were not labeled with the
same con®dence. Some of the negative examples were likely
mislabeled due to the lack of experimental veri®cation. This
noise may have lead to underestimated predictor speci®cities.

Figure 2. Sequence complexity distributions. Sequence complexity K2 was
calculated for the sliding window of 45 residues. The data set `all disorder'
consisted of disordered regions characterized by X-ray diffraction (extracted
from PDB-Select-25), NMR and CD (extracted from the literature).
Globular-3D data set consisted of the ordered protein regions extracted from
PDB and ®brous sequences such as coiled coils, collagen and silk ®broins
were removed from this data set. A lower sequence complexity is observed
for P-sites as compared with NP-sites (inset).

Figure 3. Comparison of amino acid compositions between disordered
protein regions, P- and NP-sites. The composition for each data set is shown
in comparison with the ordered Globular-3D data set. The results are
presented as the difference between the composition of each data set and
the composition of ordered globular protein regions: (Cdata set ± CGlobular-3D) /
CGlobular-3D. A negative bar indicates that the data set is depleted in the cor-
responding amino acid, and the positive bar indicates enrichment. Amino
acid residues on the X-axes are arranged according to the ¯exibility scale
(27). The middle residues for P- and NP-sites representing actual
phosphorylation sites were excluded from the calculations. The error bars
correspond to 1 SD.

Figure 4. The process of model building and testing.
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Using the approach described in Materials and Methods, we
estimated the amount of noise in the negative data sets to be
~14% for serine, ~5% for threonine and ~8% for tyrosine.
Subsequently, the correction formula provided us with more
accurate speci®cities. We believe that the true speci®cities for
the S, T, and Y predictors are ~85, ~84 and ~88%,
respectively, pushing the overall prediction accuracy to 80%
for serine, 82% for threonine and 86% for tyrosine. Similar
corrections applied to NetPhos and Scansite would increase
the accuracy of these methods as well. Hence, an immediate
step towards improving the results of this study should be
acquiring (or selecting) better quality data that will enable us
to obtain (i) improved phosphorylation predictors and (ii)
more accurate estimates of sn and sp, both leading to higher
quality estimates of phosphorylation in nature.

Prediction of phosphorylation sites in protein functional
categories from SWISS-PROT

We previously predicted disorder in various protein functional
categories extracted from the SWISS-PROT database (3).
Here, we predicted phosphorylation sites in the same protein
data sets using DISPHOS and a new estimation method
(Materials and Methods). The estimated percentages of
predicted S, T and Y phosphorylation sites for each data set

and for disordered and ordered protein regions are shown in
Figure 5.

The most interesting result is that we predict over 10 times
more phosphorylation sites in completely disordered proteins
than in ordered proteins from PDB, which strongly supports
the idea of a tight interconnection between protein phos-
phorylation and disorder. Moreover, the number of predicted
phosphorylation sites in Figure 5 correlates highly with the
amount of predicted disorder (3) in all protein categories.

Previously we showed that regulatory, cancer-associated
and cytoskeletal proteins have about twice as much predicted
disorder than proteins involved in degradation, biosynthesis
and metabolism (3). Here, we observed very similar but even
more profound differences in the percentages of predicted
serine phosphorylation sites for the same protein data sets:
57.4 6 0.7, 42.2 6 1.1 and 40.6 6 0.9% for regulatory,
cancer-associated and cytoskeletal proteins versus 10.8 6 1.7,
8.7 6 0.6 and 5.9 6 1.1% for degradation, biosynthesis and
metabolism data sets, respectively (Fig. 5). These differences
support the hypothesis that proteins involved in regulatory and
signaling cellular functions undergo more frequent phos-
phorylation/dephosphorylation than proteins involved pre-
dominantly in catalysis.

Prediction of phosphorylation sites in various kingdoms
and proteomes

It is well known that regulation in bacteria occurs via histidine
or aspartic acid phosphorylation, involved in two-component
signaling pathways (43). However, the putative homologs of
eukaryotic protein serine/threonine kinases and phosphatases,
found in bacteria and archaea, suggest the possibility of
alternative eukaryotic-like signal transduction pathways in
these species (44). Therefore, we were interested in comparing
the DISPHOS predictions on viral, archaeal and bacterial
proteins with predictions on proteins from seven complete or
almost complete eukaryotic genomes (Table 5).

The percentages of predicted S, T and Y phosphorylation
sites in each data set are shown in Table 5. We predict that on
average from 18 (Caenorhabditis elegans) to 32%
(Drosophila melanogaster) of all serine residues in eukaryotic
proteomes may become phosphorylated, whereas this number
ranges from only 2% in bacteria to 7% in viruses. Likewise,
the percentage of predicted threonine phosphorylation sites in
most eukaryotic proteomes (5±9%) exceeds those in bacteria
(2%) and archaea (2%). We estimate that viruses and yeast
have equal percentages (3%) of threonine phosphorylation

Table 4. Comparison of the accuracies (% 6 95% con®dence intervals) between the NetPhos and DISPHOS

Site NetPhos DISPHOS
position-speci®c

Final DISPHOS

Round 1a Round 2 Round 3 Round 4

S 69.2 74.9 6 0.3 75.6 6 0.3 75.8 6 0.4 76.0 6 0.3 76.0 6 0.3
VL2 disorder VLXT disorder Relative frequency G Relative frequency I

T 71.9 78.9 6 0.6 80.5 6 0.3 81.0 6 0.3 81.1 6 0.3 81.3 6 0.3
VL2 disorder Relative frequency S NNSSP helix Relative frequency F

Y 60.6 81.3 6 0.5 82.0 6 0.3 83.3 6 0.3 83.3 6 0.3 83.0 6 0.3
Relative frequency Q Relative frequency T Relative frequency K Surface exposure

aThe achieved accuracy of predictor together with the best feature for each selection round is shown. The accuracies of S, T and Y phosphorylation sites
predictors increased by 6.8, 9.4 and 22.7%, respectively, in comparison with NetPhos.

Figure 5. Estimated percentages of S, T and Y phosphorylation sites in 12
functional protein categories from SWISS-PROT and in disordered and
ordered data sets. The y-axis indicates the estimated percentage of
phosphorylated S, T or Y residues in each data set. The data set `all
disorder' consisted of disordered protein regions characterized by X-ray
diffraction (extracted from PDB-Select-25), NMR and CD (extracted from
the literature). The data set `PDB order' consisted of the ordered protein
regions with known 3D structure extracted from PDB. The error bars corres-
pond to 1 SD.
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sites. Interestingly, the estimated percentage of threonine
phosphorylation sites in higher eukaryotes exceeds those in
yeast, worm and plant proteomes. The percentage of tyrosine
phosphorylation sites in all data sets is very similar and ranges
from 4 to 5% in prokaryotes, viruses and archaea, and from 6
to 8% in eukaryotes (Table 5).

DISCUSSION

Predictor optimization and application

Although we developed a relatively high-accuracy predictor,
there are several limitations that may still greatly impact the
proteome-wide estimates. The most obvious source of
predictor inaccuracy is the unreliably labeled, negative
training set. Numerous un-annotated or not-yet-discovered
phosphorylation sites are likely to be present in the NP training
set, even though we removed all sites >30% identical to
P-sites. In addition, estimates of the noise level are in¯uenced
by the assumptions made in our approach (Materials and
Methods). Another evident source of inaccuracy is the small
positive training set.

As mass spectrometry-based technologies are becoming
available for high-throughput determination of phosphoryl-
ation sites (45), it will be possible to expand the positive data
set and also to clean the negative data set, subsequently
designing a predictor with even higher accuracy. Meanwhile,
the current predictor can be utilized to gain insight into large-
scale phosphorylation patterns of entire proteomes. In add-
ition, it can be used to predict new phosphorylation sites in
proteins involved in various cell-signaling pathways that
might improve our understanding of their biologically relevant
functions and regulation.

Implications for substrate recognition

Kinase substrates typically bind to the enzyme with weak
af®nity, and yet phosphorylation by each kinase is speci®c
(46). High speci®city coupled with low af®nity is ideal for
signaling. One way that such a combination of characteristics
can be achieved is via coupled binding and folding (47). The
low net af®nity arises because the positive free energy
associated with the disorder-to-order transition reduces the

magnitude of the negative free energy arising from the
interactions within the contact surface. The usefulness of
protein disorder for such high speci®city/low af®nity signaling
interactions was pointed out almost 25 years ago (47).

While our approach does not yield sequence patterns for the
substrates of speci®c kinases, there are clear relationships
between our results and those in the PROSITE database (48)
for several kinases. The motif [RK]-(2)x-[ST], where S or T is
the phosphorylation site and x can be any residue, is
preferentially phosphorylated by cAMP- and cGMP-depend-
ent protein kinases and exactly corresponds to the enrichment
pattern reported here for both S and T (Fig. 1). Moreover, the
known substrates and inhibitors of cAMP-dependent protein
kinase as well as the optimal sequence derived from the
peptide library for this enzyme both have arginine at positions
±2 and ±3, and this signature is considered to be very
important for phosphorylation (38). The phosphorylation sites
[ST]-x-[RK] and [ST]-x(2)-[DE] for protein kinase C and
casein kinase II, respectively, are also identical to the sites
observed here (Fig. 1). Another example that supports the
validity of our analysis is a very strong preference for proline
at position +1 for the serine phosphorylation site by the cyclin-
dependent serine/threonine protein kinases (49). Using a
peptide library of substrates, Songyang et al. (38) found one
more position +3 where arginine or lysine is highly preferred
by cyclin-dependent kinases. This ®nding agrees with the
known phosphorylation sites for these enzymes and with the
signi®cant position-speci®c residues for S and T discovered
here using a bioinformatics approach (Fig. 1).

There is one site for tyrosine protein kinases ([RK]-x(2)-
[DE]-x(3)-Y or [RK]-x(3)-[DE]-x(2)-Y) in PROSITE that
only partially corresponds to the pattern discovered by our
analysis. We did not observe either R or K at position ±7
upstream from Y, but we found both D and E at positions ±3
and ±4. The abundance of the acidic residues upstream from
the Y site is also a signature for phosphorylation by Src kinase
(50). Interestingly, the substrate speci®cities of SH2 domains
from other tyrosine protein kinases (Fyn, Lck, Fgr and Abl)
corresponding to the consensus sequence Y(Ph)EE(I/V),
where Y(Ph) means phosphotyrosine (51), exactly match the
one found here (Fig. 1). Although there are a number of

Table 5. Prediction of phosphorylation sites on proteins from SWISS-PROT and on seven entire proteomes

Databases Estimated %a of phosphorylation sites
S T Y

SWISS-PROT
Eukaryotes 17.5 6 2.0 4.7 6 0.9 6.8 6 1.0
Bacteria 2.0 6 0.8 1.5 6 0.8 4.5 6 0.7
Archaea 2.5 6 0.8 1.6 6 0.7 5.0 6 0.7
Viruses 7.0 6 0.8 3.0 6 0.8 5.1 6 1.0

Proteomes
Arabidopsis thaliana 18.9 6 1.0 5.4 6 1.0 8.2 6 1.0
Caenorhabditis elegans 18.6 6 1.5 5.5 6 1.0 6.3 6 1.0
Drosophila melanogaster 32.0 6 2.2 8.9 6 1.3 7.9 6 0.8
Homo sapiens 26.9 6 2.0 9.5 6 1.7 8.5 6 1.2
Mus musculus 21.4 6 1.0 7.0 6 0.9 7.5 6 0.9
Rattus norvegicus 20.9 6 0.9 7.0 6 0.9 7.5 6 1.0
Saccharomyces cerevisiae 19.2 6 1.2 3.0 6 0.8 6.7 6 0.9

a61 SE (correct under the assumption that the noise level in the negative set is accurately estimated).
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exceptions to all listed consensus patterns, our results are
in good agreement with the experimentally determined
phosphorylation motifs.

The pattern-based methods such as those using PROSITE
patterns emphasize amino acids that occur at particular
positions and overlook amino acids that are excluded from
the same or other positions in the pattern (this, however, is not
true for PROSITE pro®les or Pfam hidden Markov models).
As shown in Table 3, the absence of a particular amino acid
from a motif can be as important as the presence of an amino
acid within a motif. If viewed from the protein folding
perspective, avoiding steric clashes and the placement of
hydrophobic amino acids on the protein surface can be as
essential as forming well packed interfaces. Thus, modifying
pattern-matching methods to explicitly include the absence of
residues from particular positions in the pattern should lead to
improved performance of these methods.

Protein phosphorylation from structural biology
perspective

Several observations support our results indicating that
phosphorylation commonly occurs within intrinsically dis-
ordered protein regions.

Relatively few regions of disorder have been structurally
characterized, yet a signi®cant fraction of them contain
phosphorylation sites (4). Overall, disordered regions have a
much higher frequency of known phosphorylation sites than
ordered regions, suggesting a strong preference for locating
phosphorylation sites in the regions of intrinsic disorder.
Disordered regions also have signi®cantly larger fractions of
predicted phosphorylation sites than do ordered regions
(Fig. 5). Our previous observations show that ~12 or ~7% of
ordered serines have high B-factors, i.e. 2 or 3 SD above
protein means, respectively (52). Yet, we predict that only 1%
of serines in the ordered regions could be phosphorylated
(Fig. 5). Similarly, albeit to a lesser extent, 9% (5%) of
ordered threonines have high B-factors, while only 1% of
ordered threonines are predicted to be phosphorylated. These
data raise the possibility that protein phosphorylation of
serines and threonines predominantly occur within intrinsic-
ally disordered regions and not merely on surface residues.
The analysis of tyrosine sites shows that 4% (2%) of residues
have high B-factors, while we predict 6% of ordered tyrosines
to be phosphorylated. Therefore, tyrosines appear to be
phosphorylatable both in intrinsically disordered and surface
exposed ordered states.

Three biologically important protein kinase inhibitors,
PKIa (53), p27 (54) and p21 (55), are polypeptides that bind
to their respective kinases via very well characterized
disorder-to-order transitions. Similar disorder-to-order transi-
tions, although less extensively characterized, exist for a
number of actual kinase peptide substrates. The part of the
PKIa inhibitor that covers the active site (56,57) and nine
additional bound peptide substrates found in PDB all have
extended, irregular conformations that are consistent with
disordered structure (see the following structures in PDB:
1ATP, 1IR3, 1O6I, 1QMZ, 1PHK, 1O6K, 1GY3, 1CDK and
1JBP).

The bound substrate or inhibitor peptides have essentially
no intra-chain backbone hydrogen bonding while having
extensive hydrogen bonding between their backbones and the

backbones or side chains of their kinase partners (56±60). The
formation of these hydrogen bonds would not be possible if
the sites of phosphorylation were located within ordered
regions. That is, this hydrogen bond formation requires that
the peptide substrates have available backbone hydrogen
bonding potential just prior to association with kinase, and
such availability is simply incommensurate with ordered
protein structure (61). Thus, these data strongly suggest that
the peptide substrates of kinases must be disordered. While the
extensive hydrogen bonding between peptide substrates and
their kinase partners has been noted by many researchers, the
implications for the order±disorder status of phosphorylation
sites was previously overlooked.

As shown above, the available structural data are consistent
with a strong preference for phosphorylation to occur in
regions of intrinsic disorder. There are, however, very few
counter examples, in which the 3D structures of phosphoryl-
ation sites have been observed in the absence of phosphoryl-
ation (9). One such example is sigma-factor SpoIIAA from
Bacillus subtilis, whose structure was solved in both the
phosphorylated (1H4X) and unphosphorylated (1H4Z) forms.
The main differences between these two forms are found
within segment 83±98, with residues 93±95 being disordered
in the 1H4Z structure. Although the actual phosphorylation
site (Ser57) is ordered in both structures, the exceptionally
slow rate of SpoIIAA phosphorylation by SpoIIAB does not
exclude the possibility of local unfolding of the region
surrounding Ser57 just prior to phosphate attachment. Another
example is isocitrate dehydrogenase (IDH) from Escherichia
coli. Both unphosphorylated and Ser113-phosphorylated
forms of IDH are ordered in crystal structures, and no large-
scale conformational change is observed in the unliganded
enzyme on in vitro phosphorylation by IDH kinase/phospha-
tase. Interestingly, IDH kinase/phosphatase is an unusual
protein that does not exhibit the extensive sequence homology
to other protein kinases. Therefore, the mechanism of
phosphorylation by IDH kinase/phosphatase and other
eukaryotic kinases may differ signi®cantly in terms of
requirement for a region to be unfolded prior to phosphoryl-
ation.

Parallel studies on the structural requirements for protease
digestion sites can provide further insight on the phosphoryl-
ation process. While regions of intrinsic disorder are clearly
and strongly favored over regions of order as sites of protease
digestion (62,63), a few trypsin-sensitive sites were observed
to be located within protein structured domains. These
regions, however, inevitably require local unfolding prior to
protease digestion in order to become accessible to the
protease. It was shown that the folded forms could not ®t into
the enzyme active site without disordering at least 12 residues
surrounding the sites of trypsin digestion (64).

In view of the structural aspects of protease digestion, we
suggest several possible scenarios for the phosphorylation
counter examples occurring in ordered protein regions.
(i) Intrinsic disorder may not be universally required for all
kinase substrates. From the data presented herein, phosphoryl-
ation of a site within an ordered protein region would require a
kinase±substrate interaction that is markedly different from
those characterized to date. (ii) The region to be phosphoryl-
ated undergoes an order to disorder transition just prior to
association with the kinase, thereby exposing its backbone
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hydrogen bonding potential. (iii) The observed structures are
crystallization artifacts, with intrinsic disorder prevailing in
the regions surrounding the sites of phosphorylation. Further
studies on the counter-example proteins are needed to decide
among the three alternatives given above. Such studies
could provide important new understanding of protein
phosphorylation.
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